A Comparative Study of Ensemble-based Forecasting Models for Stock Index Prediction
نویسندگان
چکیده
Stock prices as time series are, often, non-linear and non-stationary. This paper presents an ensemble forecasting model that integrates Empirical Mode Decomposition (EMD) and its variation Ensemble Empirical Mode Decomposition (EEMD) with Artificial Neural Network (ANN) for short-term forecasts of stock index. In first stage, the data is decomposed into a smaller set of Intrinsic Mode Functions (IMFs) and residuals using EMD and EEMD. In the next stage, IMFs and residue are taken as the inputs for the ANN model to train and predict the future stock price. The methodology was tested with weekly Nifty data for a period of 8 years. The results suggest that the ensemble forecast model using aggregation of the decomposed series performs better than traditional ANN and Support Vector Regression Models. Further, trading strategies based on EEMDANN models yielded better return on investments than Buy-and-Hold strategy.
منابع مشابه
Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملA Comparative Study of Two Technical Analysis Tools: Moving Average Convergence and Divergence V/S Relative Strength Index: A Case Study of HDFC Bank ltd listed in National Stock Exchange of India (NSE)
Technical analysis is the forecasting of future price movement based on an examination of past prices. Some scientist found that the study of historical prices cannot predict future prices. In this research we intend to study which technical analysis tool is better for prediction of future price movement, for this purpose we are studying two the most strongest technical analysis tools is called...
متن کاملStock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...
متن کاملA Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index
Study of volatility has been considered by the academics and decision makers dur-ing two last decades. First since the volatility has been a risk criterion it has been used by many decision makers and activists in capital market. Over the years it has been of more importance because of the effect of volatility on economy and capital markets stability for stocks, bonds, and foreign exchange mark...
متن کامل